Answer:
The standard deviation of given probability distribution is 0.767.
Explanation:
We are given the following information in the question:
X: 0 1 2 3 4
P(x): 0.4521 0.3970 0.1307 0.0191 0.0010
Formula:
![\text{Mean} = \sum X.P(x)\\= 0(0.4521) + 1(0.3970) + 2(0.1307) + 3(0.0191) + 4(0.0010)\\= 0.7197](https://img.qammunity.org/2020/formulas/mathematics/college/u0epc5yq4xtar986npx7nfpatsg4vl0v3v.png)
![\mu = 0.7197](https://img.qammunity.org/2020/formulas/mathematics/college/1e5bo81nj1q058qsq3agdtsssphd4roxt3.png)
Formula:
![\text{Variance} = \sum (X-\mu)^2E(x)\\= (0-0.7197)^2(0.4521)+(1-0.7197)^2(0.3970)+(2-0.7197)^2(0.1307)+(3-0.7197)^2(0.0191)+(4-0.7197)^2(0.0010) \\=0.587](https://img.qammunity.org/2020/formulas/mathematics/college/spdg6koxj01hmml8oa86mn571u3fgyvsy1.png)
![\text{Standard Deviation} = \sqrt{\text{Variance}}\\= √(0.587) = 0.767](https://img.qammunity.org/2020/formulas/mathematics/college/90m9kc4os9p9xiyhpbw7vin7z4zygwt8hg.png)
The standard deviation of given probability distribution is 0.767.