Answer:
a)
![f_1=5.587Hz](https://img.qammunity.org/2020/formulas/physics/college/89fm5fp3w5b248j4hnx721vec7v8j96mdt.png)
b)
![f_(n+1)-f_n=5.587Hz](https://img.qammunity.org/2020/formulas/physics/college/41q2ge9c9sl11ln0v2av2pud93pmck1dje.png)
Step-by-step explanation:
The frequency of the
harmonic of a vibrating string of length L, linear density
under a tension T is given by the formula:
![f_n=(n)/(2L) \sqrt{(T)/(\mu)](https://img.qammunity.org/2020/formulas/physics/college/fhgfirq5g5pci56c811t1rtd37ckqym4q3.png)
a) So for the fundamental mode (n=1) we have, substituting our values:
![f_1=(1)/(2(347m)) \sqrt{(65.4*10^6N)/(4.35kg/m)}=5.587Hz](https://img.qammunity.org/2020/formulas/physics/college/7mkm5zvd84oscd7mdpbwbd5xubt34ra3cy.png)
b) The frequency difference between successive modes is the fundamental frequency, since:
![f_(n+1)-f_n=(n+1)/(2L) \sqrt{(T)/(\mu)}-(n)/(2L) \sqrt{(T)/(\mu)}=(n+1-n)(1)/(2L) \sqrt{(T)/(\mu)}=(n)/(2L) \sqrt{(T)/(\mu)}=f_1=5.587Hz](https://img.qammunity.org/2020/formulas/physics/college/mzij1ps2ir6c1f7zjfcr5a04hh8awnct1z.png)