Answer:
Option C. 6 ft
Explanation:
Let
h ----> the height of the ramp
we know that
The ramp is in the shape of a right triangle
so
Applying the Pythagoras theorem
![c^(2)=a^(2)+b^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ipopn0dndgzoywacpkehydfdusw5okjgav.png)
where
c is the hypotenuse of the right triangle (the greatest side)
a and b are the legs of the right triangle
substitute the given values
![10^(2)=h^(2)+8^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j3j5yf90kp5emfoy2foik6j68zyj5yejx3.png)
![100=h^(2)+64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m4uzyyjnhgfba8j5vimv89ztouvr55xefu.png)
![h^(2)=100-64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oc1ebdw2xlx44ir2vgp9sruc57ux6le8bs.png)
![h^(2)=36](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z7g2zliqkwkbi9nanv6thkmeb59wt4806n.png)
square root both sides
![h=6\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/roa7062tskftnhj04nt0x1gpuz4knurl90.png)