Answer:
The speed of the wind is 3.5 miles per hour.
Solution:
Let x be the speed of the wind
The total time of the trip =
![(20)/(11.5+x)+(20)/(11.5-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lsz0da2t60pj4i33qlma1nrdsc32k2aa98.png)
From the Question we know the total time = 1 hr 20 minutes +2 hrs 30 minutes = 3 hrs 50 minutes.
We transform the time in hours and solve the equation:
![3 \text { hrs } 50 \text { minutes }=3+(50)/(60)=3+(5)/(6)=(23)/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e7bwvrgnzqb73zqjwfr1kwmqmj1j681te2.png)
The equation needed to solve the problem is:
![\begin{array}{l}{(20)/(11.5+x)+(20)/(11.5-x)=(23)/(6)} \\\\ {6 * 20(11.5-\mathrm{x})+6 * 20(11.5+\mathrm{x})=23(11.5-\mathrm{x})(11.5+\mathrm{x})} \\\\ {1350-120 \mathrm{x}+1380+120 \mathrm{x}=23\left(132.25-\mathrm{x}^(2)\right)}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vizz94gqbf9rm33c517ectdwhh76ij5yaf.png)
Evaluate to find the value of x.
![\begin{array}{l}{2760=3041.75-23 x^(2)} \\\\ {23 x^(2)=281.75} \\\\ {x^(2)=(281.75)/(23)} \\\\ {x^(2)=12.25} \\\\ {\text {Taking square root. }} \\ {x=\pm 3.5} \\ {x_(1)=-3.5} \\ {x_(2)=3.5}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jqpwyy6y6iq2zrgpvnnqmzy9th9klqi2ht.png)
The speed of wind in positive number so the solution is x = 3.5 miles per hours.