Answer:
![\large \boxed{\text{3140 kg$\cdot$m}^(-3)}](https://img.qammunity.org/2020/formulas/physics/middle-school/z5agu9ii0xvoav6c3yj96loid3gwvvq6op.png)
Step-by-step explanation:
![\text{Density} = \frac{\text{mass}}{\text{volume}}\\\\\rho = (m)/(V)](https://img.qammunity.org/2020/formulas/physics/middle-school/k42mxhfw46wayv0fvkwkad11ikpjvymijd.png)
1. Mass of paint
![\begin{array}{rcl}\text{Mass of paint} & = & \text{mass of (paint + can) - mass of can}\\& = & \text{6.50 kg - 0.22 kg}\\& = & \text{6.28 kg}\\\end{array}](https://img.qammunity.org/2020/formulas/physics/middle-school/aic9s0xut9frcj1x42rvnunh81y4qfrqnd.png)
2. Volume of paint
The paint is contained in a cylinder.
V = πr²h
(a) Radius of can
r = d/2 = (0.150 m)/2 = 0.0750 m
(b) Height of paint
h = 0.120 m - 0.007 m = 0.113 m
(c) Volume of paint
![\begin{array}{rcl}V & = & \pi r^(2)h \\& = & \pi * (\text{0.0750 m})^(2) * \text{0.113 m}\\& = & 2.002 * 10^(-3)\text{ m}^(3)\\\end{array}](https://img.qammunity.org/2020/formulas/physics/middle-school/z51zzchmzg86yu483ds6nz1pwndq70cn6x.png)
3. Density of paint
![\rho = \frac{\text{6.28 kg}}{2.002 * 10^(-3)\text{ m}^(3)} = \textbf{3140 kg$\cdot$m}^(-3)\\\\\text{The density of the paint is $\large \boxed{\textbf{3140 kg$\cdot$m}^{\mathbf{-3}}}$}](https://img.qammunity.org/2020/formulas/physics/middle-school/srq05vl89a3fgabita6kek9odu3nrw6rs4.png)