86.9k views
5 votes
Distance of the point P(3,-4) from the oirgin is?

User Micycle
by
6.0k points

2 Answers

5 votes

Answer:Answer: point (3,-4) is 3 units to the right of the origin and 4 down

Step-by-step explanation: easiest to graph

User Iano
by
6.7k points
1 vote

Answer:

Distance between origin and point P(3, -4) is 5 units.

Solution:

We need to find distance between origin and point P (3, -4) .

We will be using distance formula. According to the distance formula , distance d between two points
\left(\mathrm{x}_(1), \mathrm{y}_(1)\right) \text { and }\left(\mathrm{x}_(2), \mathrm{y}_(2)\right) is given by


d=\sqrt{\left(x_(2)-x_(1)\right)^(2)+\left(y_(2)-y_(1)\right)^(2)}

In given case two points are O ( 0 , 0 ) (origin) and P( 3 , -4) .

On applying distance formula


\begin{aligned} \mathrm{OP} &=\sqrt{(3-0)^(2)+((-4)-0)^(2)} \\ &=\sqrt{3^(2)+(-4)^(2)} \\ &=√(9+16) \\ &=√(25) \end{aligned}

So OP = 5 units

Hence distance between origin and point P(3, -4) is 5 units.

User Rashin
by
6.0k points