ANSWER:
Twice a number is added to three times it’s square. The number is 2, -2.67
SOLUTION:
Let the number be x.
Given, twice a number is added to three times it’s square.
twice a number + three times it’s square
2
number + 3
numbers square
![2 * x+3 *(x)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dee0xjrtdhl4tb7mu5iwglypod54grji2c.png)
![2 x+3 x^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i0edvu3xwi3fkmjpnhu0lq2q15ny0vglrn.png)
Also given that, result is 16. So the above equation is equal to 16
![\begin{array}{l}{2 x+3 x^(2)=16} \\ {3 x^(2)+2 x-16=0}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tgclnfhfsuq7m1x0iw7vtwx4tamttmaof0.png)
Let us find roots of above equation using quadratic formula.
![x=\frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mkg1bcz54xxjkmnvipponepv9s5euixlgu.png)
Here, a = 3, b = 2, c = -16
![\mathrm{x}=\frac{-2 \pm \sqrt{2^(2)-4 * 3 *(-16)}}{2 * 3}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1pk1oiyj19byxvqfju4s3mjbxet8eiw03l.png)
On simplification we get,
![\begin{aligned} &=(-2 \pm √(4+12 * 16))/(6) \\ &=(-2 \pm √(196))/(6) \\ &=(-2 \pm 14)/(6) \\ &=(-2+14)/(6), (-2-14)/(6) \\ &=(12)/(6), (-16)/(6) \end{aligned}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/coq3ex2llifsewf87fh8s4ko3ohad7jpwy.png)
x = 2, -2.67
Hence, the value of "x" is either 2 or -2.67