135k views
1 vote
If My−NxN=Q, where Q is a function of x only, then the differential equation M+Ny′=0 has an integrating factor of the form μ(x)=e∫Q(x)dx. Find an integrating factor and solve the given equation. (21x2y+2xy+7y3)dx+(x2+y2)dy=0

1 Answer

4 votes

Answer with Step-by-step explanation:

We are given that


(21x^2y+2xy+7y^3)dx+(x^2+y^2)dy=0

Compare with


Mdx+Ndy=0

Then, we get


M=21x^2y+2xy+7y^3


N=x^2+y^2

Differentiate M w.r.t y


M_y=21x^2+2x+21y^2

Differentiate N w.r.t x


N_x=2x


(M_y-N_x)/(N)=(21x^2+2x+21y^2-2x)/(x^2+y^2)=(21(x^2+y^2))/(x^2+y^2)=21

Q=21


I.F=e^(\int 21 dx)=e^(21x)


M=e^(21x)(21x^2+2xy+7y^3)


N=e^(21x)(x^2+y^20

Solution is given by


\int_(y\;constant) Mdx+\int_(x\;free\;terms) Ndy=C


\int_(y\;constant) e^(21x)(21x^2y+2xy+7y^3)dx=C


\int_(y\;constant)21x^2ye^(21x) dx+\int_(y\;constant)2xye^(21x)dx+\int_(y\;constant)7y^3e^(21x)dx=C

Using partial integration


u\cdot v dx=u\int vdx-\int ((du)/(dx)\int vdx)dx


21x^2y}(e^(21x))/(21)-2y\int xe^(21x)dx+(2xye^(21x))/(21)-(2y)/(21)\int e^(21x)dx+(7y^3e^(21x))/(21)=C


x^2ye^(21x)-(2xye^(21x))/(21)+(2ye^(21x))/(441)+(2xye^(21x))/(21)-(2ye^(21x))/(441)+(7y^3e^(21x))/(21)=C


x^2ye^(21x)+(y^3e^(21x))/(3)=C

User Kyle Pittman
by
5.9k points