Answer:
![(5√(x))/(x^4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/e99bmcvqmjotq4y0t2do52nlyr2ou1e6mz.png)
Explanation:
The given expression is
![(5)/(√(x^7))](https://img.qammunity.org/2020/formulas/mathematics/high-school/q8e1uvt6rko2h9r1i1uskp2jqaqk0r23bj.png)
We need to find the simplified form of the given expression.
Using product property of exponent we get,
![[\because a^ma^n=a^(m+n)]](https://img.qammunity.org/2020/formulas/mathematics/high-school/nq3mx7h59riuovldnajkcjliesnhhlzghy.png)
(Distributive property)
![[\because (a^m)^n=a^(mn)]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/szk6cyxjbwli8sw7h22ardwfk55yjnha0d.png)
![(5)/(x^3\cdot √(x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/ve3vdacbic9rjx0swhyzdspuuy3nr2cy6m.png)
Multiply numerator and denominator by
to rationalize denominators.
![(5)/(x^3\cdot √(x))* (√(x))/(√(x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/thtoykd1izdj4wlyv3wgs9nxm79hy5380m.png)
![(5√(x))/(x^3\cdot (√(x))^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/u1j1y5q6hx7pajdjsvs3b5y8zarjix9wss.png)
![(5√(x))/(x^3\cdot x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/d6m1shshdwdy2r4e62xlrd8x1pbstoecq1.png)
![(5√(x))/(x^4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/e99bmcvqmjotq4y0t2do52nlyr2ou1e6mz.png)
Therefore, the simplified form of given expression is
.