170k views
5 votes
interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and normal components of acceleration .r(t) = cos 2t i + sin 2t j + k.

User DemaxSH
by
7.2k points

1 Answer

1 vote

Answer:

The curvature is
\kappa=1

The tangential component of acceleration is
a_{\boldsymbol{T}}=0

The normal component of acceleration is
a_{\boldsymbol{N}}=1 (2)^2=4

Explanation:

To find the curvature of the path we are going to use this formula:


\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where


\boldsymbol{T}} is the unit tangent vector.


(ds)/(dt)=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find
\boldsymbol{r}'(t), we know that
\boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so


\boldsymbol{r}'(t)=(d)/(dt)\left(cos\left(2t\right)\right)\:\boldsymbol{i}+(d)/(dt)\left(sin\left(2t\right)\right)\:\boldsymbol{j}+(d)/(dt)\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector


|| \boldsymbol{r}'(t)}||=√((-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2) \\|| \boldsymbol{r}'(t)}||=√(2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right))\\|| \boldsymbol{r}'(t)}||=√(4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right))\\|| \boldsymbol{r}'(t)}||=√(4)√(\sin ^2\left(2t\right)+\cos ^2\left(2t\right))\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2√(1)=2

The unit tangent vector is defined by


\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}


\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector


\boldsymbol{T}'=(d)/(dt)(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is


||\boldsymbol{T}'||=2√(\cos ^2\left(x\right)+\sin ^2\left(x\right)) =2

The curvature is


\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=(2)/(2) =1

The tangential component of acceleration is given by the formula


a_{\boldsymbol{T}}=(d^2s)/(dt^2)

We know that
(ds)/(dt)=|| \boldsymbol{r}'(t)}|| and
||\boldsymbol{r}'(t)}||=2


(d)/(dt)\left(2\right)\: = 0 so


a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula


a_{\boldsymbol{N}}=\kappa ((ds)/(dt))^2

We know that
\kappa=1 and
(ds)/(dt)=2 so


a_{\boldsymbol{N}}=1 (2)^2=4

User Georgi Michev
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories