170k views
5 votes
interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and normal components of acceleration .r(t) = cos 2t i + sin 2t j + k.

User DemaxSH
by
7.2k points

1 Answer

1 vote

Answer:

The curvature is
\kappa=1

The tangential component of acceleration is
a_{\boldsymbol{T}}=0

The normal component of acceleration is
a_{\boldsymbol{N}}=1 (2)^2=4

Explanation:

To find the curvature of the path we are going to use this formula:


\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where


\boldsymbol{T}} is the unit tangent vector.


(ds)/(dt)=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find
\boldsymbol{r}'(t), we know that
\boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so


\boldsymbol{r}'(t)=(d)/(dt)\left(cos\left(2t\right)\right)\:\boldsymbol{i}+(d)/(dt)\left(sin\left(2t\right)\right)\:\boldsymbol{j}+(d)/(dt)\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector


|| \boldsymbol{r}'(t)}||=√((-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2) \\|| \boldsymbol{r}'(t)}||=√(2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right))\\|| \boldsymbol{r}'(t)}||=√(4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right))\\|| \boldsymbol{r}'(t)}||=√(4)√(\sin ^2\left(2t\right)+\cos ^2\left(2t\right))\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2√(1)=2

The unit tangent vector is defined by


\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}


\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector


\boldsymbol{T}'=(d)/(dt)(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is


||\boldsymbol{T}'||=2√(\cos ^2\left(x\right)+\sin ^2\left(x\right)) =2

The curvature is


\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=(2)/(2) =1

The tangential component of acceleration is given by the formula


a_{\boldsymbol{T}}=(d^2s)/(dt^2)

We know that
(ds)/(dt)=|| \boldsymbol{r}'(t)}|| and
||\boldsymbol{r}'(t)}||=2


(d)/(dt)\left(2\right)\: = 0 so


a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula


a_{\boldsymbol{N}}=\kappa ((ds)/(dt))^2

We know that
\kappa=1 and
(ds)/(dt)=2 so


a_{\boldsymbol{N}}=1 (2)^2=4

User Georgi Michev
by
8.5k points

No related questions found