218k views
1 vote
Identify the x-intercepts of the function below f(x)=x^2+12x+24

1 Answer

3 votes

ANSWER:

x-intercepts of
\mathrm{x}^(2)+12 \mathrm{x}+24=0 \text { are }(-6+2 √(3)),(-6-2 √(3))

SOLUTION:

Given,
f(x)=x^(2)+12 x+24 -- eqn 1

x-intercepts of the function are the points where function touches the x-axis, which means they are zeroes of the function.

Now, let us find the zeroes using quadratic formula for f(x) = 0.


X=\frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}

Here, for (1) a = 1, b= 12 and c = 24


X=\frac{-(12) \pm \sqrt{(12)^(2)-4 * 1 * 24}}{2 * 1}


\begin{array}{l}{X=(-12 \pm √(144-96))/(2)} \\\\ {X=(-12 \pm √(48))/(2)} \\\\ {X=(-12 \pm √(16 * 3))/(2)} \\\\ {X=(-12 \pm 4 √(3))/(2)} \\ {X=(2(-6+2 √(3)))/(2), (2(-6-2 √(3)))/(2)} \\\\ {X=(-6+2 √(3)),(-6-2 √(3))}\end{array}

Hence the x-intercepts of
\mathrm{x}^(2)+12 \mathrm{x}+24=0 \text { are }(-6+2 √(3)),(-6-2 √(3))

User Tianle
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories