62.3k views
5 votes
Using variation of parameters method to find particular solution d^2y/dx^2+y=tanx+3x-1

User Informaton
by
5.2k points

1 Answer

1 vote

The corresponding homogeneous equation


(\mathrm d^2y)/(\mathrm dx^2)+y=0

has characteristic equation


r^2+1=0

which admits two roots,
r=\pm i, so the characteristic solution is


y_c=C_1\cos x+C_2\sin x

So we know two fundamental solutions,
y_1=\cos x and
y_2=\sin x. These two solutions have Wronskian determinant


W(y_1,y_2)=\begin{vmatrix}\cos x&\sin x\\-\sin x&\cos x\end{vmatrix}=\cos^2x+\sin^2x=1

so they are linearly independent.

We use variation of parameters to find a particular solution
y_p=u_1y_1+u_2y_2, where


u_1=-\displaystyle\int\sin x(\tan x+3x-1)\,\mathrm dx=-\ln|\sec x+\tan x|-2\sin x+(3x-1)\cos x


u_2=\displaystyle\int\cos x(\tan x+3x-1)\,\mathrm dx=2\cos x+(3x-1)\sin x


\implies y_p=-\cos x\ln|\sec x+\tan x|-2\sin x\cos x+(3x-1)\cos^2x+2\sin x\cos x+(3x-1)\sin^2x


\implies y_p=-\cos x\ln|\sec x+\tan x|+3x-1


\implies\boxed+3x-1

User Baske
by
5.0k points