Answer:
Option A)
![\displaystyle(y)/(x)\text{ of point B} = (y)/(x) \text{ of poinrt A}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/silw44kzb1ituqyzrmqip3tb0xsfa2ef1c.png)
Explanation:
We are given the following in the question:
Point A and B lies on the line with the equation:
![y =\displaystyle(3)/(4)x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gu5nvnnho6xs6eoskswf0qdztgmholzwcd.png)
Let
be the coordinates of A and let
be the coordinates of point B, then, these points satisfy the equation of the given line.
Thus, we can write:
![y_1 =\displaystyle(3)/(4)x_1\\\\(y_1)/(x_1)=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q3q3myftkvak6e2r57guejxcu84fqyzer4.png)
\
![y_2 =\displaystyle(3)/(4)x_2\\\\(y_2)/(x_2)=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qqa0vcakpcpdjnv0jztif7cqhuocks9puu.png)
Thus, we can write,
![\displaystyle(y_1)/(x_1) = (y_2)/(x_2) = (3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yanusbvysshsuhvmmmryh8m8nec7k67jez.png)
Thus, from the given statements, the true statement is
![\displaystyle(y)/(x)\text{ of point B} = (y)/(x) \text{ of poinrt A}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/silw44kzb1ituqyzrmqip3tb0xsfa2ef1c.png)