Answer:
The probability is 0.4972
Explanation:
The probability density function for the time of failure is:
f(t) = k e^(-kt)
Where k=1/a and a = 80hr so f(t) is equal to:
![f(t)=(1)/(a)e^{(-t)/(a) }](https://img.qammunity.org/2020/formulas/mathematics/college/8dxasrcx5raoylf7e7zru30kh2mjamfn2m.png)
![f(t)=(1)/(80)e^{(-t)/(80) }](https://img.qammunity.org/2020/formulas/mathematics/college/6whrd6safjgoe7a46sycmg6z3tndjlrjsl.png)
Then, if the probability density function follow a exponential distribution, the probability distribution function is:
![F(t)=1-e^(-t/a)](https://img.qammunity.org/2020/formulas/mathematics/college/f8ljyb06bzdwbqeof4rlmj8wkwtamswdpl.png)
![F(t)=1-e^(-t/80)](https://img.qammunity.org/2020/formulas/mathematics/college/j20gsw61f3xkzzuiocevufx5jjq6csxd8x.png)
The probability distribution function give as the probability that a failure will occur in t hours or less, so the probability that a failure will occur in 55 hr or less is calculated as:
![F(55)=1-e^(-55/80)=0.4972](https://img.qammunity.org/2020/formulas/mathematics/college/nz86pjj5e8usart9ft21qbzzyjow9uzmir.png)