Answer:
The ratio of asteroid-A’s acceleration to asteroid-B’s acceleration is 37:7800.
Step-by-step explanation:
Mass of asteroid-A = m =
![7.80* 10^(20) kg](https://img.qammunity.org/2020/formulas/geography/college/k98jzfxxlqro8emh844mxznpkxj8fopfpd.png)
Mass of asteroid-B = m' =
![3.70* 10^(18) kg](https://img.qammunity.org/2020/formulas/geography/college/ik4vqcfjy4sgdlejgkcrewu8gaocxc84xi.png)
As we know , Force = mass × Acceleration
1) Force on an asteroid-A
![F = m* a](https://img.qammunity.org/2020/formulas/geography/college/4nr4bq8bv54pz7ccmsl6dpy76492jl0xya.png)
where , a is the acceleration due to force applied on asteroid-A
2) Force on an asteroid-B
![F' = m'* a'](https://img.qammunity.org/2020/formulas/geography/college/zuqi7i1ss3pp4e4rzm7uu24dw7s0bsrv8l.png)
where , a' is the acceleration due to the force applied on asteroid-B
Same force is exerted on the both the asteroids say F.
F = F'
![m* a=m'* a'](https://img.qammunity.org/2020/formulas/geography/college/7uv6zsxgmkk6xzdmnf0ny0vq02jnje04fr.png)
![(a)/(a')=(3.70* 10^(18) kg)/(7.80* 10^(20) kg)=(37)/(7800)](https://img.qammunity.org/2020/formulas/geography/college/vy5y4wf5jgkradyhxn8da1ib0p2mn3223e.png)
The ratio of asteroid-A’s acceleration to asteroid-B’s acceleration is 37:7800.