Answer:
Part 4) k=1/2
Part 5) k=-2/3
Part 6) y=32
Part 7) x=6
Part 8) v=99
Part 9)b=6
Part 10) y=6
Explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or
![y=kx](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ho37lptiefci31wskjnke7d88izbug72ti.png)
In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin
Part 4) Find the value of the constant of proportionality k
we have
![y=(1)/(2)x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ik52je9aq3bcfhe17462cjizvmc546kyv8.png)
Remember that the value of k is the same that the value of the slope
![m=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9gq13vkbwmo51ith9m75i4nvd47h1lakuk.png)
so
![k=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h8pwe46q2u36o7jelpp9z86j0pj8bluzti.png)
Part 5) Find the value of the constant of proportionality k
we have
![y=-(2)/(3)x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xcrg961l2ea8m40volldij6hl283ju41ve.png)
Remember that the value of k is the same that the value of the slope
![m=-(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gzkjqcgnz8ew7y8ddbt3ilmy18cglvo4xd.png)
so
![k=-(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/npy8aquz82jgjx6km64z8psjmokdpz9abn.png)
Part 6) Suppose that y varies directly with x, and y=16 when x=8. Find y when x=16
step 1
Find the value of the constant of proportionality k
![k=y/x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8nmf8ebisn1xutkhsq54vv0hvin2yq55c4.png)
![k=16/8=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n733dbpveis2skqfzr47lskad0y8d4qcd4.png)
step 2
Find the equation of the direct variation
![y=kx](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ho37lptiefci31wskjnke7d88izbug72ti.png)
substitute the value of k
![y=2x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qeikkehr3tck2vx09s7uvb1jwawqh078s6.png)
step 3
Find y when x=16
![y=2(16)=32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iqkv9tfsm8j3ldp93k2f21qrxbeip6tafq.png)
Part 7) Suppose that y varies directly with x, and y=21 when x=3. Find x when y=42
step 1
Find the value of the constant of proportionality k
![k=y/x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8nmf8ebisn1xutkhsq54vv0hvin2yq55c4.png)
![k=21/3=7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zyvew2iyinfyynnaipe7rrzupkipyedt30.png)
step 2
Find the equation of the direct variation
![y=kx](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ho37lptiefci31wskjnke7d88izbug72ti.png)
substitute the value of k
![y=7x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ykm4bd2k37c0zmhh082e4z4ml0hgm0w9up.png)
step 3
Find x when y=42
![42=7x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aarezxzi000tu4k3415gu4jxmrn3ler3el.png)
solve for x
![x=42/7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bwe7dphe3rdk63d6sh2me0q7u4bmblyb1n.png)
![x=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iytjkob8c453cdntkigo6vyjyk3yzlat9o.png)
Part 8) Suppose that v varies directly with g, and v=36 when g=4. Find v when g=11
step 1
Find the value of the constant of proportionality k
![k=v/g](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xs3wuiho2yvppt0drfnsft7jj8ycxn5v5l.png)
![k=36/4=9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mid3w0sw1qtw7jxtshg38mhwa3bnpsjnb3.png)
step 2
Find the equation of the direct variation
![v=kg](https://img.qammunity.org/2020/formulas/mathematics/middle-school/smrezbtrfivu6xp7eq2wojj6nwrb0xnzhr.png)
substitute the value of k
![v=9g](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fshjz6l7b32l6k1n5pbzgz9v8qwp7p522z.png)
step 3
Find v when g=11
![v=9(11)=99](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dhqtevsgtywfilr0qr9i0k5msdetwzhbrt.png)
Part 9) Suppose that a varies directly with a, and a=7 when b=2. Find b when a=21
step 1
Find the value of the constant of proportionality k
![k=a/b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/raq3sgc0rmgazkf7lbvdxvwkwy02gzyycm.png)
![k=7/2=3.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dl5x71j1sfki28ui16cqs78s7lbzey8h2u.png)
step 2
Find the equation of the direct variation
![a=kb](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u1hv2mvo3p0hosn70tq7w4x2c7okm6bja8.png)
substitute the value of k
![a=3.5b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2r6jgkuq2gfghawzkvms7of9ibffoz2ccr.png)
step 3
Find b when a=21
![21=3.5b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nwooyvf7vc9mqhuoyr2sbnrcvohtxie7hx.png)
solve for b
![b=21/3.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2h0akfbvfxhvo9i3ylhqfltxz9481iixih.png)
![b=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/90ir9ziaeybnuzc722z4bpne41739m4wor.png)
Part 10) Suppose that y varies directly with x, and y=9 when x=3/2. Find y when x=1
step 1
Find the value of the constant of proportionality k
![k=y/x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8nmf8ebisn1xutkhsq54vv0hvin2yq55c4.png)
![k=9/(3/2)=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kjpxprt390mo8r3xgxj7e6q3s4a7j3h7ho.png)
step 2
Find the equation of the direct variation
![y=kx](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ho37lptiefci31wskjnke7d88izbug72ti.png)
substitute the value of k
![y=6x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4f532g6zbtn338ovgi0ksaru6wnngf9sr1.png)
step 3
Find y when x=1
![y=6(1)=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8qahbhp53hgc24w0sg8o6z1s728fmsgr0x.png)