184k views
5 votes
The work function for metallic potassium is 2.3 eV. Calculate the velocity in km/s for electrons ejected from a metallic potassium surface by light of wavelength 260 nm.

1 Answer

2 votes

Answer:

932.44 km/s

Step-by-step explanation:

Given that:

The work function of the magnesium = 2.3 eV

Energy in eV can be converted to energy in J as:

1 eV = 1.6022 × 10⁻¹⁹ J

So, work function =
2.3* 1.6022* 10^(-19)\ J=3.68506* 10^(-19)\ J

Using the equation for photoelectric effect as:


E=\psi _0+\frac {1}{2}* m* v^2

Also,
E=\frac {h* c}{\lambda}

Applying the equation as:


\frac {h* c}{\lambda}=\psi _0+\frac {1}{2}* m* v^2

Where,

h is Plank's constant having value
6.626* 10^(-34)\ Js

c is the speed of light having value
3* 10^8\ m/s

m is the mass of electron having value
9.11* 10^(-31)\ kg


\lambda is the wavelength of the light being bombarded


\psi _0=Work\ function

v is the velocity of electron

Given,
\lambda=260\ nm=260* 10^(-9)\ m

Thus, applying values as:


(6.626* 10^(-34)* 3* 10^8)/(260* 10^(-9))=3.68506* 10^(-19)+(1)/(2)* 9.11* 10^(-31)* v^2


3.68506* \:10^(-19)+(1)/(2)* \:9.11* \:10^(-31)v^2=(6.626* \:10^(-34)* \:3* \:10^8)/(260* \:10^(-9))


(1)/(2)* 9.11* 10^(-31)* v^2=7.64538* 10^(-19)-3.68506* 10^(-19)


(1)/(2)* 9.11* 10^(-31)* v^2=3.96032462* 10^(-19)


v^2=0.869446* 10^(12)

v = 9.3244 × 10⁵ m/s

Also, 1 m = 0.001 km

So, v = 932.44 km/s

User Drew Dahlman
by
5.4k points