69.3k views
2 votes
Use the following equilibrium reaction and constant for the deprotonation of bicarbonate (HCO3-) to carbonate (CO32-) to determine: HCO3 = CO2 + H+ K = 10-10.33 (a) Whether HCO3 or CO32- would dominate at pH 9.1 and (b) What the concentration of [CO32-] would be at this pH if [HCO3 ] = 10-6 M

User Cguedel
by
5.7k points

1 Answer

0 votes

Answer:

For a:
HCO_3^- will dominate at pH = 9.1

For b: The concentration of carbonate ions at pH = 9.1 will be
5.9* 10^-8}M

Step-by-step explanation:

To calculate the pH of the solution, we use the equation:


pH=-\log[H^+] ......(1)

  • For a:

We are given:

pH = 9.1

Putting values in equation 1, we get:


9.1=-\log[H^+]


[H^+]=10^(-9.1)

For the given chemical equation:


HCO_3^-\rightarrow CO_3^(2-)+H^+;K_a=10^(-10.33)

The expression of
K_a for above reaction follows:


K_a=([CO_3^(2-)]* [H^+])/([HCO_3^-])

Putting value of hydrogen ion concentration in above equation, we get:


10^(-10.33)=([CO_3^(2-)]* 10^(-9.1))/([HCO_3^-])\\\\([HCO_3^-])/([CO_3^(2-)])=(10^(-9.1))/(10^(-10.33))\\\\([HCO_3^-])/([CO_3^(2-)])=16.98


[HCO_3^-]=16.98* [CO_3^(2-)]

Hence,
HCO_3^- will dominate at pH = 9.1

  • For b:

The expression of
K_a for above reaction follows:


K_a=([CO_3^(2-)]* [H^+])/([HCO_3^-])

We are given:


K_a=10^(-10.33)


[H^+]=10^(-9.1)


[HCO_3^-]=10^(-6)M

Putting values in above equation, we get:


10^(-10.33)=([CO_3^(2-)]* 10^(-9.1))/(10^(-6))


[CO_3^(2-)]=(10^(-6)* 10^(-10.33))/(10^(-9.1))=5.9* 10^-8}M

Hence, the concentration of carbonate ions at pH = 9.1 will be
5.9* 10^-8}M

User Nazim Hafeez
by
5.0k points