Answer:
a) 0.1587 b) 0.023 c) 0.1587 d) 1.15 e)-0.95
Explanation:
We are given the following information in the question:
Mean, μ = 510
Standard Deviation, σ = 100
We are given that the distribution of SAT score is a bell shaped distribution that is a normal distribution.
Formula:
![z_(score) = \displaystyle(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/college/5bpvqdbyqd8y38zhlcp80hz1p4ka5nivnl.png)
a) P(score greater than 610)
P(x > 610)
![P( x > 610) = P( z > \displaystyle(610 - 510)/(100)) = P(z > 1)](https://img.qammunity.org/2020/formulas/mathematics/college/133jedp7sxbpjwiecxo4rf6kt0pf6cl944.png)
![= 1 - P(z \leq 1)](https://img.qammunity.org/2020/formulas/mathematics/college/e7olrgsldjguomdsn124de6atxuk47hu2o.png)
Calculation the value from standard normal z table, we have,
![P(x > 610) = 1 - 0.8413 = 0.1587 = 15.87\%](https://img.qammunity.org/2020/formulas/mathematics/college/iu8tylctgbriqdq3e4b0tgkx12pfikwal8.png)
b) P(score greater than 710)
![P(x > 710) = P(z > \displaystyle(710-510)/(100)) = P(z > 2)\\\\P( z > 2) = 1 - P(z \leq 2)](https://img.qammunity.org/2020/formulas/mathematics/college/zms7vquld5298ql899c3slse6dgn80cl63.png)
Calculating the value from the standard normal table we have,
![1 - 0.977 = 0.023 = 2.3\%\\P( x > 710) = 2.3\%](https://img.qammunity.org/2020/formulas/mathematics/college/a8iy68sor4tg7zhzp19ilorknlnqvtvxx3.png)
c)P(score between 410 and 510)
![P(410 \leq x \leq 510) = P(\displaystyle(410 - 510)/(100) \leq z \leq \displaystyle(510-510)/(100)) = P(-1 \leq z \leq 0)\\\\= P(z \leq 0) - P(z < -1)\\= 0.500 - 0.159 = 0.341 = 34.1\%](https://img.qammunity.org/2020/formulas/mathematics/college/ph64wmjnnlgxjzfqjq56ksgvat8eiqrssy.png)
![P(410 \leq x \leq 510) = 34.1\%](https://img.qammunity.org/2020/formulas/mathematics/college/yiakyq7ii95ci99tbi5466ijzuhqawzawy.png)
d) x = 625
![z_(score) = \displaystyle(625 - 510)/(100) = \displaystyle(115)/(100) = 1.15](https://img.qammunity.org/2020/formulas/mathematics/college/4fl0ci7zyvj7qofqqn647zpcgvlleyke07.png)
e) x = 415
![z_(score) = \displaystyle(415 - 510)/(100) = \displaystyle(-95)/(100) = -0.95](https://img.qammunity.org/2020/formulas/mathematics/college/28dt3617kocsx4butgi5nz6r0j2uu1752m.png)