93.0k views
2 votes
Factor completly x^8- 1/81. please help:)

2 Answers

3 votes

Answer:


{x}^(8) - (1)/(81) = ( {x}^(4) + (1)/(9) )( {x}^(2) + (1)/(3) )(x + (1)/( √(3) ) )(x - (1)/( √(3) ) )

Explanation:

see the picture attached for further explanation.

Factor completly x^8- 1/81. please help:)-example-1
User M Abbas
by
6.2k points
3 votes

Answer:


\large\boxed{\left(x^4+(1)/(9)\right)\left(x^2+(1)/(3)\right)\left(x+(\sqrt3)/(3)\right)\left(x-(\sqrt3)/(3)\right)}

Explanation:


Use\\\\a^2-b^2=(a-b)(a+b)\\\\(a^n)^m=a^(nm)\\\\x^8-(1)/(81)=x^(4\cdot2)-(1)/(9^2)=(x^4)^2-\left((1)/(9)\right)^2=\left(x^4+(1)/(9)\right)\underbrace{\left(x^4-(1)/(9)\right)}_((*))\\\\(*)=x^(2\cdot2)-(1)/(3^2)=(x^2)^2-\left((1)/(3)\right)^2=\left(x^2+(1)/(3)\right)\underbrace{\left(x^2-(1)/(3)\right)}_((**))\\\\(**)=x^2-(3)/(9)=x^2-((\sqrt3)^2)/(3^2)=x^2-\left((\sqrt3)/(3)\right)^2=\left(x+(\sqrt3)/(3)\right)\left(x-(\sqrt3)/(3)\right)

User Pap
by
6.5k points