Answer:
a) 0.033
b) 0.468
c) 100
Explanation:
We are given the following information in the question:
Mean, μ = 105.3
Standard Deviation, σ = 8
The amount x of miraculin produced (measured in micro-grams per gram of fresh weight) had a normal distribution.
Formula:
![z_(score) = \displaystyle(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/college/5bpvqdbyqd8y38zhlcp80hz1p4ka5nivnl.png)
a) P(x > 120)
![P( x > 120) = P( z > \displaystyle(120 - 105.3)/(8)) = P(z > 1.8375)](https://img.qammunity.org/2020/formulas/mathematics/college/e9gv6snbg83m1mvwuu35if7n00h9ua2gyo.png)
![= 1 - P(z \leq 1.8375)](https://img.qammunity.org/2020/formulas/mathematics/college/11ijza60goisz0i6z9e4kdda6o4b2kjgzm.png)
Calculation the value from standard normal z table, we have,
![P(x > 120) = 1 - 0.967 = 0.033 = 3.3\%](https://img.qammunity.org/2020/formulas/mathematics/college/kbxkehhsaez8a0aokp9c65v3lqk8lyvzew.png)
b) P(x between 100 and 110)
![P(100 \leq x \leq 110) = P(\displaystyle(100 - 105.3)/(8) \leq z \leq \displaystyle(110-105.3)/(8)) = P(-0.6625 \leq z \leq 0.5875)\\\\= P(z \leq 0.5875) - P(z \leq -0.6625)\\= 0.722 - 0.254 = 0.468 = 46.8\%](https://img.qammunity.org/2020/formulas/mathematics/college/ij5kv9k7a4x0blrpcrl4yd2mzdohcn3wjs.png)
![P(100 \leq x \leq 110) = 46.8\%](https://img.qammunity.org/2020/formulas/mathematics/college/vv2753nxc0klsbw2fzahndxllh6qkopzz8.png)
c) P(x < a) = 0.25
![P( x \leq a) = P( z \leq \displaystyle(a - 105.3)/(8)) = 0.25](https://img.qammunity.org/2020/formulas/mathematics/college/uo4c3eodjmejpmz4e52ld5da3luchwfuwo.png)
Calculation the value from standard normal z table, we have,
![P( z \leq -0.674) = 0.25](https://img.qammunity.org/2020/formulas/mathematics/college/4izrcqs386e7d0ayd6ku8b12ss7kwo91aa.png)
![\displaystyle(x - 105.3)/(8) = -0.674\\\\x = -0.674* 8 + 105.3 = 99.908 \approx 100](https://img.qammunity.org/2020/formulas/mathematics/college/2ytj2mwnjhevmi6888hzxb0oy2r3if4rdl.png)