Answer:
![\Delta x=22.67786838m](https://img.qammunity.org/2020/formulas/physics/college/rjb9lnbyorm6hxba5p6pwvr2emfvjvzzax.png)
Step-by-step explanation:
Let's use projectile motion equations. First of all we need to find the travel time. So we are going to use the next equation:
(1)
Where:
![y=Final\hspace{3}position\hspace{3}at\hspace{3}y-axis](https://img.qammunity.org/2020/formulas/physics/college/5nwtlvplsxbv46oon5n74u11ryjglzmfa0.png)
![y_o=Initial\hspace{3}position\hspace{3}at\hspace{3}y-axis](https://img.qammunity.org/2020/formulas/physics/college/u3dwfh87tw5yikb5zi49en0n0lj3h1n37p.png)
![v_o=initial\hspace{3}velocity](https://img.qammunity.org/2020/formulas/physics/college/h0hfzv2e58wq917lwtjkpxccx98foh5p8d.png)
![t=travel\hspace{3}time](https://img.qammunity.org/2020/formulas/physics/college/fajnda9026hzpp0857rx8o2sx3k2x7amlo.png)
![g=gravity\hspace{3}constant](https://img.qammunity.org/2020/formulas/physics/college/btr5fye3ph48b3ot8nr73lyk2jt9re51yd.png)
![\theta=Initial\hspace{3}launch\hspace{3}angle](https://img.qammunity.org/2020/formulas/physics/college/mzlks4b5ujnzfl1mhy4uxzjy347yvl81yj.png)
In this case:
![\theta=0](https://img.qammunity.org/2020/formulas/physics/high-school/86hzk7x9eqf9sq0k1l59pcbz47m72ljehk.png)
Because the dog jumps horizontally
Let's asume the gravity constant as:
![g=9.8](https://img.qammunity.org/2020/formulas/physics/college/s1eowiuk8mutl1re8d6vkokog3k2as1bfh.png)
![y=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/b792qjogr8s4ujwepli4crk8crr7izzend.png)
Because when the dog reach the base the height is 0
![y_o=70](https://img.qammunity.org/2020/formulas/physics/college/6dtr70kf26pfa0rgqv0ooztr4p1j2iytx1.png)
![v_o=6](https://img.qammunity.org/2020/formulas/physics/college/4tfd0qerznrs69fu76mznd69bqtzzwfo5d.png)
Now let's replace the data in (1)
![y_o-(1)/(2) *(9.8)*t^2+70](https://img.qammunity.org/2020/formulas/physics/college/foxrgndcj5k3fm596ao60pog9ys9be4nu5.png)
Isolating t:
![t=\pm\sqrt{(2*70)/(9.8) } =3.77964473](https://img.qammunity.org/2020/formulas/physics/college/j4a19x4mwd5yaxiyorzs4k6kt289ovyf6y.png)
Finally let's find the horizontal displacement using this equation:
![\Delta x=v_o*cos(\theta)*t](https://img.qammunity.org/2020/formulas/physics/college/glqb7xopwpc6qxhievhgpe7sr0y8z6ya3r.png)
Replacing the data:
![\Delta x=6*1*3.77964473=22.67786838m](https://img.qammunity.org/2020/formulas/physics/college/ytty4x7r9rjx7h6rlxaco6nrcqrpcrqex8.png)