Answer:
Explanation:
Let X be the random variable representing the number of missing pulses or errors. The number of errors on a test area has Poisson with parameter = 0.2
a) Expected no of errors per test area =
![0.2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jok3ohr4xx7oqg0pixt6v2dbricg8nt2s8.png)
(Since in a Poisson distribution mean = parameter value)
b)percentage of test areas have two or fewer errors
100*P(X≤2)
![P(X\leq 2) = P(0)+P(1)+P(2)\\= (e^(-0.2) 0.2^0)/(o!) +(e^(-0.2) 0.2^1)/(1!)+(e^(-0.2) 0.2^2)/(2!)](https://img.qammunity.org/2020/formulas/mathematics/college/dthpmzwx2jf2s74m3rh4wv00p6pethjajl.png)
![=P(X≤2)=0.99885](https://img.qammunity.org/2020/formulas/mathematics/college/9qqy4hapvn2zhwt7762rfnhmxaheqwvwtu.png)
Hence percentage = 99.885%