Answer:
a)
![C=4.92*10^(-9)F](https://img.qammunity.org/2020/formulas/physics/college/g1nb3yj6fkpzhuc1jtwahxvtcg07y2yxxe.png)
b)
![Q=6.88*10^(-8)C](https://img.qammunity.org/2020/formulas/physics/college/uhkvzxwh88kzj1h2ohhtiy8tm3dmbihqdc.png)
c)
![E=15555.6V/m](https://img.qammunity.org/2020/formulas/physics/college/7rknyuw1tqx3p8l5qifhc3d1wuzcou9c6m.png)
Step-by-step explanation:
a) The capacitance of a parallel-plate capacitor with plates of area A separated a distance d with a dielectric of dielectric constant k is given by the formula:
![C=(k\epsilon_0A)/(d)](https://img.qammunity.org/2020/formulas/physics/college/75g9x8ebpasm7dvehre4vby4qtn2zuxr3r.png)
where
is the permittivity.
We use our values in S.I.:
![C=(k\epsilon_0A)/(d)=((5)(8.85*10^-12F/m)(0.1m^2))/((0.0009m))=4.92*10^(-9)F](https://img.qammunity.org/2020/formulas/physics/college/pa1w2kh4hmhqo00669213ecqk5m73iak2t.png)
b) The charge stored Q on a capacitor of capacitance C connected to a voltage V is given by the formula Q=CV.
Using our values:
![Q=CV=(4.92*10^(-9)F)(14V)=6.88*10^(-8)C](https://img.qammunity.org/2020/formulas/physics/college/503lse8de94fh22elbd5yhf3yb0p91v4v6.png)
c) The electric field E between plates separated a distance d where a voltage V is applied is obtained with the formula
.
We use our values:
![E=(V)/(d)=(14V)/(0.0009m)=15555.6V/m](https://img.qammunity.org/2020/formulas/physics/college/a86ql7463gxgxtzjpuvyj6mph9zmplp7f1.png)