Answer:
a)
![E=(Q)/(\varepsilon _o* 4\pi r^2)\ N/C](https://img.qammunity.org/2020/formulas/physics/college/jsn7my0a33wap342rjb393qmbt2wkghsyr.png)
b)E=0
c)
![E=(Q)/(\varepsilon _o* 4\pi r^2)\ N/C](https://img.qammunity.org/2020/formulas/physics/college/jsn7my0a33wap342rjb393qmbt2wkghsyr.png)
Step-by-step explanation:
Given that
A point charge Q is placed at the center of a conducting spherical shell .Due to this - Q charge will induce on the inner sphere surface and +Q will induce on the outer sphere surface .
a) r < a
At a radius r ,from gauss theorem
![E.ds=(q_i)/(\varepsilon _o)](https://img.qammunity.org/2020/formulas/physics/college/dgrmp2f8mq33ebm4yrsn8aucq10akpw729.png)
![E* 4\pi r^2=(Q)/(\varepsilon _o)](https://img.qammunity.org/2020/formulas/physics/college/3cy7zdxy1c8vxknc3eea6kiy3xwxqsslb8.png)
![E=(Q)/(\varepsilon _o* 4\pi r^2)\ N/C](https://img.qammunity.org/2020/formulas/physics/college/jsn7my0a33wap342rjb393qmbt2wkghsyr.png)
b) a < r < b
![E.ds=(q_i)/(\varepsilon _o)](https://img.qammunity.org/2020/formulas/physics/college/dgrmp2f8mq33ebm4yrsn8aucq10akpw729.png)
The total induce in this surface = - Q+ Q =0
![E.ds=(0)/(\varepsilon _o)](https://img.qammunity.org/2020/formulas/physics/college/l0ow67vztk4r0wn7fswmdh7wbc3cyrhg2n.png)
E = 0
c) r > b
![E.ds=(q_i)/(\varepsilon _o)](https://img.qammunity.org/2020/formulas/physics/college/dgrmp2f8mq33ebm4yrsn8aucq10akpw729.png)
![E* 4\pi r^2=(Q)/(\varepsilon _o)](https://img.qammunity.org/2020/formulas/physics/college/3cy7zdxy1c8vxknc3eea6kiy3xwxqsslb8.png)
![E=(Q)/(\varepsilon _o* 4\pi r^2)\ N/C](https://img.qammunity.org/2020/formulas/physics/college/jsn7my0a33wap342rjb393qmbt2wkghsyr.png)