Answer:
The minimum value is
or
![(-0.75,-6.125)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/avwdv4viexdxdqv23sr2aw4xvsd5w7410v.png)
Explanation:
we have
![f(x)=2x^(2)+3x-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jk62yl8wuqh9l36i1sbmylbetloivr0akn.png)
This is the equation a vertical parabola open upward
The vertex represent a minimum
The general equation in vertex form is
![f(x)=a(x-h)^2+k](https://img.qammunity.org/2020/formulas/mathematics/high-school/7ipmrrobocsxyi038fh5rmhmhaf4i7cji9.png)
where
(h,k) is the vertex
Convert the given function in vertex form
![f(x)=2x^(2)+3x-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jk62yl8wuqh9l36i1sbmylbetloivr0akn.png)
Factor 2
![f(x)=2(x^(2)+(3)/(2)x)-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bmc4d4vfqrt7z6bx4zspbqhvcm3eklshq1.png)
Complete the square
![f(x)=2(x^(2)+(3)/(2)x+(9)/(16))-5-(9)/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qarj6xui8q0346xsx9fzkjcp3gj6wnktud.png)
![f(x)=2(x^(2)+(3)/(2)x+(9)/(16))-(49)/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7483aht8u6vc6dtvqxmzanzy9npdpu999x.png)
Rewrite as perfect squares
![f(x)=2(x+(3)/(4))^(2)-(49)/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kznyuw6xkgddp71hat9fgj1bzv47bk00ib.png)
The vertex is the point
![(-(3)/(4),-(49)/(8))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rqnpoz1j52umdrzrpo5dlm9wqnogse8uji.png)