Answer:
661284 lb-ft
Step-by-step explanation:
We are given that height of water tank=18 ft
Radius of circular tank=12 ft
Density of water=
![62.4 lb/ft^3](https://img.qammunity.org/2020/formulas/physics/high-school/q36nvqw3ubimqcae7n4bksa2dwfhszt0n4.png)
![(r)/(h)=(12)/(18)=(2)/(3)](https://img.qammunity.org/2020/formulas/physics/high-school/l6280rwbiid7timzdksl8rz48ib7zi46n8.png)
![r=(2)/(3)h](https://img.qammunity.org/2020/formulas/physics/high-school/nof167b3ld44q6v6l1m34pgreritn5x4qs.png)
We have to find the work done in pumping all of the water over the top of the tank.
![m=density* volume](https://img.qammunity.org/2020/formulas/physics/high-school/5bdoghztk7dbqm6cm3ilugkzyowxj6y2au.png)
![W=62.4* 3.14* (4)/(9)h^2(18-h)dh](https://img.qammunity.org/2020/formulas/physics/high-school/zaw83etl36i09w1i5a9tut692jn6vufwtd.png)
![W=195.936\cdot \int_(0)^(15)(8h^2-\farc{4}{9}h^3dh](https://img.qammunity.org/2020/formulas/physics/high-school/wg7qefq3dnmga6u61ji1f116d5r8prqw5f.png)
![W=195.936* [(8h^3)/(3)-(h^4)/(9)]^(15)_0](https://img.qammunity.org/2020/formulas/physics/high-school/o14m8kyl718a9ue3jk27jjtixjn2paen8c.png)
![W=195.936* 3375=661284 ftlb](https://img.qammunity.org/2020/formulas/physics/high-school/tqlz7im96ohu6anxo3oojzwm41ikyt23ke.png)
Hence, the work done in pumping all of the water over the top of the tank=661284 ft lb.