Answer:
![S_a_v_e_r_a_g_e=48km/h](https://img.qammunity.org/2020/formulas/physics/college/c0slw3y2miaazmnqnvczawve14ly8tepjg.png)
Step-by-step explanation:
Ok, the average speed can be calculate with the next equation:
(1)
Basically the car cover the same distance "d" two times, but at different speeds, so:
![Total\hspace{3}distance=2*d](https://img.qammunity.org/2020/formulas/physics/college/x3r0693wxxveq639xxhxbwl9mvoex9ioyo.png)
and the total time would be the time t1 required to go from A to B plus the time t2 required to go back from B to A:
![Total\hspace{3}time=t1+t2](https://img.qammunity.org/2020/formulas/physics/college/qel6b0dqpt76sttokei7bcnvf612dh6efw.png)
From basic physics we know:
![t=(d)/(S1)](https://img.qammunity.org/2020/formulas/physics/college/efbq6idzsjgz3ufw86rtb2027b85uygh2q.png)
so:
![t1=(d)/(S1)](https://img.qammunity.org/2020/formulas/physics/college/7q8k0zzfp1p6gqz09k4b2iptg4ekhnqvw6.png)
![t2=(d)/(S2)](https://img.qammunity.org/2020/formulas/physics/college/5457dma5wo13b7r35nyc5urx8o3mos3i47.png)
Using the previous information in equation (1)
![S_a_v_e_r_a_g_e=(2*d)/((d)/(S1) +(d)/(S2) )=(2*d)/((d*S2+d*S1)/(S1+S2) )](https://img.qammunity.org/2020/formulas/physics/college/78zi7lvxeqhn103qtkfey6tbqfrkyprr0x.png)
Factoring:
(2)
Finally, replacing the data in (2)
![S_a_v_e_r_a_g_e=(2*40*60)/(60+40) =48km/h](https://img.qammunity.org/2020/formulas/physics/college/urfhngk296buffyaavun8dcsu72r0g0al4.png)