Answer: The value of equilibrium constant for the above reaction is 12.7
Step-by-step explanation:
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
![K_(c)](https://img.qammunity.org/2020/formulas/chemistry/high-school/ofk1zqeld7mprrtd5vhx03fe8fne3mco8n.png)
For a general chemical reaction:
![aA+bB\rightleftharpoons cC+dD](https://img.qammunity.org/2020/formulas/chemistry/high-school/dryh6ete16632qzpd3n0j15bhhimzbxfk0.png)
The expression for
is written as:
![K_(eq)=([C]^c[D]^d)/([A]^a[B]^b)](https://img.qammunity.org/2020/formulas/chemistry/middle-school/i3xubhuf1a7gm3aqx745lvdzgt15yry9zu.png)
For the given chemical reaction:
![A+2B\rightleftharpoons C](https://img.qammunity.org/2020/formulas/chemistry/college/4vijkttx9vxd07snnzosxput3f1frprifx.png)
Initial: 0.350 0.800 0.500
At Eqllm: 0.350-x 0.800-x 0.500+x
We are given:
![[A]_(eq)=0.150M](https://img.qammunity.org/2020/formulas/chemistry/college/ch6j8vnxm1pxu05rt0odlpqgilw45l0jih.png)
![[C]_(eq)=0.700M](https://img.qammunity.org/2020/formulas/chemistry/college/g14knmi5ubr2jlwxh3csnxjtakrrfkkf6b.png)
Calculating for 'x'. we get:
![0.500+x=0.700\\\\x=0.200](https://img.qammunity.org/2020/formulas/chemistry/college/8lgtgtl4z2esxkmq2viy4w9i45lbefgqbm.png)
So, the equilibrium concentration of B will be
![[B]_(eq)=(0.800-x)=0.800-0.200=0.600M](https://img.qammunity.org/2020/formulas/chemistry/college/nd335vgu3669wgqxcnwf724aci62cr6d95.png)
The expression of
for above reaction follows:
![K_c=([C])/([A][B]^2)](https://img.qammunity.org/2020/formulas/chemistry/college/osh4toetin82125hmugjdi6rph99g3k3ph.png)
Putting values in above equation, we get:
![K_c=(0.700)/(0.150* (0.600)^2)\\\\K_c=12.7](https://img.qammunity.org/2020/formulas/chemistry/college/io4n0ire4cwnvdpvbs04zj97482mble9q9.png)
Hence, the value of equilibrium constant for the above reaction is 12.7