Answer:
Perimeter of rectangle=
![2 (√(10) + √(29))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1fp5ndgp8dm7n35ivaras6x9wrov72z1vx.png)
=
.
Explanation:
Given:
![E(x_(1), y_(1)) = (1. -1), F(x_(2), y_(2)) = (-4, 1), G(x_(3), y_(3)) = (-3, 4), H(x_(4), y_(4)) = (2, 2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2l0m4b3r5y7u6xy84zgte2880sue4pbsk9.png)
Using distance formula:
Length of EF =
![\sqrt{(x_(2) - x_(1) )^2 + (y_(2) - y_(1))^2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dhncmw0p7mg7hkgm90lohkgewbb27kz11i.png)
=
![√((-4 - 1)^2 + (1 - (-1))^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fvy534a8bsgrwp1r1515egzhvrkcogs45w.png)
=
![√((-4 - 1)^2 + (1 + 1))^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x65jhzc2celdkliw8b9r2u8f973v5r8y1n.png)
=
![√((-5)^2 + (2))^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hr5vaaololg1l12igeaxxm1lhdb5r275qo.png)
=
![√(25 + 4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/si7v2q744kiz5x4pbzxzsg9re1nq42rkj7.png)
=
![√(29)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o3bp5xa97mrs8syxh20qd1ta08l20vcmq3.png)
Length of FG =
![\sqrt{(x_(3) - x_(2) )^2 + (y_(3) - y_(2))^2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qmijih0d5qr1ju4ld2mgs6anf6fbovfep7.png)
=
![√((-3 - (-4)^2 + (4 - 1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8q0j3e4131iay7dhnadp8kzp0zpl36yd8o.png)
=
![√((1)^2 + (3)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pznmcb0ostihrso1ictfg9a5yun8hk0wgz.png)
=
![√(1 + 9)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s7cbmplvl7vvtcdkhcemsa31e1el5qvuwn.png)
=
![√(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p3rxd5dx30e2ywr4vtpyl4vy1y09y3v3ly.png)
Length of GH =
![\sqrt{(x_(4) - x_(3) )^2 + (y_(4) - y_(3))^2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3r5ctmohcbefvghwd8ycaqz3d8f8fk5k1g.png)
=
![√((2 - (-3))^2 + (2 - 4)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xrpscnm56qtgj17dmlul922ag10uawmsco.png)
=
![√((5)^2 + (-2))^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m0otrut198tdwfw4g6zv0t1cwq7nit8pfs.png)
=
![√(25 + 4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/si7v2q744kiz5x4pbzxzsg9re1nq42rkj7.png)
=
![√(29)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o3bp5xa97mrs8syxh20qd1ta08l20vcmq3.png)
Length of HE =
![\sqrt{(x_(4) - x_(1) )^2 + (y_(4) - y_(1))^2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6cjbspxynxx54mac5jyxc7mpv5yl91njhv.png)
=
![√((2 - 1)^2 + (2 - (-1))^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k5n9wx9h3p82mo9nlm8rrkkf6akrhptqfb.png)
=
![√((1)^2 + (3)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pznmcb0ostihrso1ictfg9a5yun8hk0wgz.png)
=
![√(1 + 9)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s7cbmplvl7vvtcdkhcemsa31e1el5qvuwn.png)
=
![√(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p3rxd5dx30e2ywr4vtpyl4vy1y09y3v3ly.png)
∵ EFGH is a rectangle ∴ EH = FG and EF = HG
Perimeter of rectangle = 2 ( EF + FG + GH + HE)
= 2 (EF + FG)
=
![2 (√(10) + √(29))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1fp5ndgp8dm7n35ivaras6x9wrov72z1vx.png)
=
![2√(10) + 2√(29)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/moxbyqpbyuhpl61qhemdpga9dj94aiy7c0.png)
Therefore option (b) is the correct answer.