Answer:
R=7.34km ∠ 63.47° South of East.
Step-by-step explanation:
We can either solve this graphically or by using the components of the given vectors. I'll solve it by using the components. So first we need to do a sketch of what the displacements will look like (See attached picture).
The piture is not drawn to scale, but it should help us visualize the directions better. I will name each displacement a different letter so we can distinguish them. We will say that if he goes north, he will have positive y-displacement, if he goes south, he will have negative y-displacement, if he goes east, he will have positive x-displacement and if he goes west, he will have negative x-displacement.
So having said this let's begin. So let's take the first displacement, displacement A:
2.50 km 45° north of west.
He goes north here which means he has positive y-displacement and he goes west, which means he has negative x-displacement. Its components can be found by using the sin and cos functions, like this:
![A_(x)=Acos(\theta)](https://img.qammunity.org/2020/formulas/physics/college/pha5tnaalu0yku4kogiucddzqdl809l2z5.png)
![A_(x)=2.50 cos (45^(o))](https://img.qammunity.org/2020/formulas/physics/college/8cvgx7kffparbwfb0zaplihunkwe9k3cou.png)
![A_(x)=-1.7678km i](https://img.qammunity.org/2020/formulas/physics/college/czwpmgzn3e53ycsqcvcjetyf1x1yssh5qx.png)
![A_(y)=Asin(\theta)](https://img.qammunity.org/2020/formulas/physics/college/kr0fb36b49nud1v7p60037hn4bmvyyslfa.png)
![A_(y)=2.50 sin (45^(o))](https://img.qammunity.org/2020/formulas/physics/college/w8qzk6fzhxszni5lshkz1kcai2sfnz7984.png)
![A_(y)=1.7678km j](https://img.qammunity.org/2020/formulas/physics/college/k80q5g1q92md42w9yt7uaz4h7troqisr2a.png)
and we do the same with the other vectors.
B = 4.70km 60.0° south of east:
![B_(x)=2.35i km](https://img.qammunity.org/2020/formulas/physics/college/v1sbb6ex9zfpjmobcp82gerpwx96d0bl24.png)
![B_(y)=-4.070j km](https://img.qammunity.org/2020/formulas/physics/college/tp54ck453tp58zql2oetny7mz4t3l939aa.png)
C = 1.30km 25.0° south of west:
![C_(x)=-1.1782i km](https://img.qammunity.org/2020/formulas/physics/college/n0p8aa8njpv2c3gk7odn1aidz1w17rwata.png)
![C_(y)=-0.549j km](https://img.qammunity.org/2020/formulas/physics/college/hd5k9f8l2i4utwqsy875j1vbcmd97e1p5r.png)
D = 5.10km straight east:
![D_(x)=5.10i km](https://img.qammunity.org/2020/formulas/physics/college/9oofyix5nq8ehwu9qx21hmxfkbav0xlgq2.png)
![D_(y)=0j km](https://img.qammunity.org/2020/formulas/physics/college/dz6itfipdaikwo454g1ykldr3f69apvnad.png)
E = 1.70km 5.00° east of north
In this case we need to flip the functions due to the direction of the displacement.
![E_(x)=Esin(\theta)](https://img.qammunity.org/2020/formulas/physics/college/73uq3wtcfcjo3u3emq82dk5ctu13b7mxl1.png)
![E_(x)=1.70 sin (5^(o))](https://img.qammunity.org/2020/formulas/physics/college/73hlpuglkonsixlpohvrpd1t2e3xrzwmx0.png)
![E_(x)=0.1482km i](https://img.qammunity.org/2020/formulas/physics/college/q6wick9d0c65b4ud1lus466seuavsh5xq6.png)
![E_(y)=Ecos(\theta)](https://img.qammunity.org/2020/formulas/physics/college/1ogh0snjx58hgxvf7gwojj1i21znqe29c6.png)
![E_(y)=1.70 cos (5^(o))](https://img.qammunity.org/2020/formulas/physics/college/qdt4v112tt867s5my7uat6yraipt80uaq7.png)
![E_(y)=1.6935km j](https://img.qammunity.org/2020/formulas/physics/college/ita3r1phtro0r7aa6y7mbjlxz3j79vhqhq.png)
F = 7.20km 55.0° south of west:
![F_(x)=-4.13i km](https://img.qammunity.org/2020/formulas/physics/college/lnp8j8vcsowfjj2onggru2es74wbot8vwb.png)
![F_(y)=-5.898j km](https://img.qammunity.org/2020/formulas/physics/college/mt5615ux2awdhu0s3u5hsf39xgk1oiiai1.png)
G = 2.80km 10.0° north of east:
![G_(x)=2.757i km](https://img.qammunity.org/2020/formulas/physics/college/9tp7y5c574169ev9i7v6326p1uc07fg1v7.png)
![G_(y)=0.486j km](https://img.qammunity.org/2020/formulas/physics/college/hc6ertrwgj8qze8jdwsz3zcp4wu9w1wit7.png)
So now it's time to find the resulting vector, so we get:
![R_(x)=A_(x)+B_(x)+C_(x)+D_(x)+E_(x)+F_(x)+G_(x)](https://img.qammunity.org/2020/formulas/physics/college/67vsjx904ujuiazfoqvomxakyudahi11nx.png)
![R_(x)=-1.7678i+2.35i-1.1782i+5.10i+0.1482i-4.13i+2.757i](https://img.qammunity.org/2020/formulas/physics/college/zz467q8f13sma715hrdmol52n4pbh1296t.png)
![R_(x)=3.2792i km](https://img.qammunity.org/2020/formulas/physics/college/heiq4v2jf2wfx4jnqxkld0qntdj2mw3aei.png)
![R_(y)=A_(y)+B_(y)+C_(y)+D_(y)+E_(y)+F_(y)+G_(y)](https://img.qammunity.org/2020/formulas/physics/college/zaq6eszhc7dqbcfsmi3jta4kdqiu5u55um.png)
![R_(y)=1.7678j-4.070j-0.549j+0j+1.6935j-5.898j+0.486j](https://img.qammunity.org/2020/formulas/physics/college/bw7e103840uar31hvl0ay60im4hhgrmcgd.png)
![R_(y)=-6.5697j km](https://img.qammunity.org/2020/formulas/physics/college/kx85j2p2wjlhcwqrmzttbjquyqtxf82i2w.png)
So, now that we have the components of the resultant vector we can find magnitude of the displacement and the angle.
![|R|=\sqrt {(3.2792)^(2)+(-6.5697)^(2)}](https://img.qammunity.org/2020/formulas/physics/college/a651mmukepph11rp0lorgf4l8wuact9y5t.png)
which yields
|R|=7.34 km
∠ =
![tan^(-1)((-6.5697)/(3.2792))](https://img.qammunity.org/2020/formulas/physics/college/685lue70k7d1nsuxew6b4l7wtxvk1ok2yg.png)
∠ = -63.47°
So the final position relative to the island is:
7.34km 63.47° South of east