Answer:
1) 25, 0 or 16, 1 or 9, 4
2) 0, 729 or 1, 512 or 8, 343 or 27, 216 or 64, 125
Explanation:
1) Let x and y are the numbers,
∵ √x + √y = 5
⇒ √x ≤ 5 and √y ≤ 5
⇒ x ≤ 25 and y ≤ 25
Thus, the possible values of x or y,
{25, 16, 9, 4, 1, 0}
If √x + √y = 5 then the possible pairs,
{(25, 0), (16, 1), (9, 4), }
Hence, the possible pairs of numbers whose square roots add up to 5 are,
25, 0 or 16, 1 or 9, 4
2) Let u and v are the numbers
∵ ∛u + ∛v = 9
∛u ≤ 9, ∛v ≤ 9
⇒ u ≤ 729, v ≤ 729
So, the possible values of u or v,
{ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729 }
Hence, the possible pairs whose cube roots add up to 9 are,
0, 729 or 1, 512 or 8, 343 or 27, 216 or 64, 125