Answer:
a. 17.5 %
b. 0.2303
Explanation:
Let's start defining the conditional probability :
Suppose two events A and B where
and
![P(B)>0](https://img.qammunity.org/2020/formulas/mathematics/high-school/adk14rwpcrfjsfhnukukpv31zdul05od4w.png)
and P(A ∩ B) = P(A,B) where (A ∩ B) is the event where A and B occur both at the same time.
The conditional probability :
![P(A/B)=(P(A,B))/(P(B)) \\P(B/A)=(P(A,B))/(P(A))](https://img.qammunity.org/2020/formulas/mathematics/high-school/m2x9n0e37klvmqgw4mh2lj4cacofv8xvtt.png)
Let's define the following events :
A : ''Randomly chosen person had accident in a fixed year''
GR : ''The person belongs to good risks classification''
AR : ''The person belongs to average risks classification''
BR : ''The person belongs to bad risks classification''
The information given is :
![P(GR)=0.20\\P(AR)=0.50\\P(BR)=0.30](https://img.qammunity.org/2020/formulas/mathematics/high-school/5q0vfqtl0ia2j0hd60cxxs3d0u4zqm1oq8.png)
![P(A/GR)=0.05\\P(A/AR)=0.15\\P(A/BR)=0.30](https://img.qammunity.org/2020/formulas/mathematics/high-school/squg1z9eqzu2dpfysbf87fvluui5mjm1le.png)
a.
We need to calculate
![P(A)](https://img.qammunity.org/2020/formulas/mathematics/high-school/d8cxo9zbkbjwqlbbjt23qsignl7j4d8bdb.png)
![P(A)=P(A,GR)+P(A,AR)+P(A,BR)\\P(A)=P(A/GR).P(GR)+P(A/AR).P(AR)+P(A/BR).P(BR)\\P(A)=(0.05)(0.2)+(0.15)(0.5)+(0.30)(0.30)\\P(A)=0.175](https://img.qammunity.org/2020/formulas/mathematics/high-school/4zqj9wi1yh3pu5b10olnigr1cobimteqgs.png)
Then 17.5% of people have accidents in a fixed year
b. If U is an event ⇒
![P(U)=1-P(U^(c))](https://img.qammunity.org/2020/formulas/mathematics/high-school/1jpwzjzkbuoeqg0pe76mzvtoe0uamfef90.png)
Where
is the event where U does not occur
We need to calculate :
![P(GR/A^(c))](https://img.qammunity.org/2020/formulas/mathematics/high-school/nrvyytju34bj3cnunncmdrnul15d7ry1sz.png)
![P(A^(c))=1-P(A)=1-0.175\\P(A^(c))=0.825](https://img.qammunity.org/2020/formulas/mathematics/high-school/7clgctvjgmxwt0oawruasmcviivxd8z60l.png)
![P(A^(c)/GR)=1-P(A/GR)=1-0.05\\P(A^(c)/GR)=0.95](https://img.qammunity.org/2020/formulas/mathematics/high-school/p6fqra5ruz4vsf6evkz2efq6biol3bm67y.png)
![P(A^(c)/GR)=(P(A^(c),GR))/(P(GR)) \\0.95=(P(A^(c),GR))/(0.2) \\P(A^(c),GR)=(0.95)(0.2) \\P(A^(c),GR)=0.19](https://img.qammunity.org/2020/formulas/mathematics/high-school/ccsgdbtf2f6on3gnl0v7ldf66427a5pcwp.png)
![P(GR/A^(c))=(P(GR,A^(c)))/(P(A^(c)))=(0.19)/(0.825)\\P(GR/A^(c))=0.2303](https://img.qammunity.org/2020/formulas/mathematics/high-school/ndbo7z2h2eewk1friuyejapgz7t5va08pn.png)