154k views
3 votes
(1 point) A Bernoulli differential equation is one of the form dydx+P(x)y=Q(x)yn. Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y1−n transforms the Bernoulli equation into the linear equation dudx+(1−n)P(x)u=(1−n)Q(x). Use an appropriate substitution to solve the equation y′−3xy=y5x3, and find the solution that satisfies y(1)=1.

1 Answer

2 votes


y'-3xy=y^5x^3

Divide both sides by
y^5:


y^(-5)y'-3xy^(-4)=x^3

Substitute
u(x)=y(x)^(-4), so that
u'=-4y^(-5)y'. Then we get a new ODE that is linear in
u,


-\frac{u'}4-3xu=x^3\implies u'+12xu=4x^3

Multiply both sides by
e^(6x^2):


e^(6x^2)u'+12xe^(6x^2)u=4x^3e^(6x^2)

Notice that
\left(e^(6x^2)u(x)\right)'=e^(6x^2)u'(x)+12xe^(6x^2)u(x). Integrating both sides with respect to
x gives


\displaystyle\int\left(e^(6x^2)u\right)'\,\mathrm dx=e^(6x^2)u=\int 4x^3e^(6x^2)\,\mathrm dx


\implies u=(e^(6x^2)(6x^2-1))/(18)+C


\implies y^4=\frac1{(e^(6x^2)(6x^2-1))/(18)+C}

Given that
y(1)=1, we find


1=\frac1{(5e^6)/(18)+C}\implies C=(18-5e^6)/(18)

so the particular solution is


y^4=\frac1{(e^(6x^2)(6x^2-1))/(18)+(18-5e^6)/(18)}


\implies\boxed{y=\sqrt[4]{\frac1{(e^(6x^2)(6x^2-1))/(18)+(18-5e^6)/(18)}}}

where we take the positive root because the initial condition tells us to expect
y>0 when
x=1.

User Ohduran
by
8.1k points