Answer with explanation:
Given : The heights of a certain population of corn plants follow a normal distribution with mean
and standard deviation
![\sigma=22\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/a2k540r9gdihf4hi1ucvjz25k9apylhoc5.png)
a) Using formula
, the z-value corresponds to x= 135 will be
![z=(135-145)/(22)\approx-0.45](https://img.qammunity.org/2020/formulas/mathematics/high-school/j8hhybnezs9k1ea2by1fpotxit7mhd33q8.png)
At x= 155,
![z=(155-145)/(22)\approx0.45](https://img.qammunity.org/2020/formulas/mathematics/high-school/i3okwvzsbrm3f7fb92f2h215hy9fret1z5.png)
The probability that plants are between 135 and 155 cm tall :-
![P(-0.45<z<0.45)=P(z<0.45)-P(z<-0.45)\\\\=0.6736447- 0.3263552\\\\=0.3472895\approx0.3473=34.73\%](https://img.qammunity.org/2020/formulas/mathematics/high-school/6cfd3kjol4krdi7v96rqymgkotm24qsdht.png)
Hence, 34.73% of the plants are between 135 and 155 cm tall.
b) Sample size : n= 16
Using formula
, the z-value corresponds to x= 135 will be
![z=(135-145)/(22){√(16)}\approx-1.82](https://img.qammunity.org/2020/formulas/mathematics/high-school/vin4x2v9nkccm9ri2tn2ogh6ajjxqeyo0i.png)
At x= 155,
![z=(155-145)/(22){√(16)}\approx1.82](https://img.qammunity.org/2020/formulas/mathematics/high-school/epoksiky2bewqhgkr6191sxvh3son2xw3b.png)
The probability that plants are between 135 and 155 cm tall :-
![P(-1.82<z<1.82)=P(z<1.82)-P(z<-1.82)\\\\= 0.9656205- 0.0343795\\\\=0.931241\approx0.9312=93.12\%](https://img.qammunity.org/2020/formulas/mathematics/high-school/jm4xfci2nosutkbwjfn56nu6tyyfivvwx5.png)
Hence,The percentage of the samples would the sample mean height be between 135 and 155 cm.= 93.12%