Answer:
![23.2 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/7ec4ps6bfrtzj9zj8g997iykvi83bjx07p.png)
Step-by-step explanation:
First of all, we need to convert the angular velocity from revolutions per second to radiands per second. We know that
![1 rev = 2 \pi rad](https://img.qammunity.org/2020/formulas/physics/college/5d6pk0d4st2jbj89webhtqxa37982kfoll.png)
So
![\omega = 2.9 rev/s \cdot 2\pi rad/rev =18.2 rad/s](https://img.qammunity.org/2020/formulas/physics/college/n5tnf55o062jpq1zcyd9howj50mrqz6cou.png)
We also know that the distance of the inner ear from the centre of the circular path is
![r = 7.0 cm = 0.07 m](https://img.qammunity.org/2020/formulas/physics/college/hfkprxce1wuinix3o6pbv433r64k4gjtkg.png)
the radial (centripetal) acceleration experienced by a point on the inner ear is
![a=\omega^2 r](https://img.qammunity.org/2020/formulas/physics/high-school/58cpxrctl3ukbbch8sh8guvsynfbmcis1b.png)
Therefore, substutiting the previous values, we find the radial acceleration of the endolymph fluid:
![a=(18.2)^2(0.07)=23.2 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/4hxuwexm95f6qqelu566j7e4wwmjzj6fd1.png)