Answer: E(Y) = 1.6 and Var(Y)=1.12
Explanation:
Since we have given that
X 0 1 2
P(X) 0.4 0.4 0.2
Here, number of games = 2
So,

Since
are independent variables.
so,
![E[Y]=2E[X]\\\\Var[Y]=2Var[X]](https://img.qammunity.org/2020/formulas/mathematics/college/a4ncd3bx1pr4m9xeui44ujxro7mls9hucu.png)
So, we get that
![E(X)=0.4* 0+0.4* 1+0.2* 2=0.8\\\\and Var[x]=E[x^2]-(E[x])^2\\\\E[x^2]=0* 0.4+1* 0.4+4* 0.2=1.2\\\\So, Var[x]=1.2-(0.8)^2\\\\Var[x]=1.2-0.64=0.56](https://img.qammunity.org/2020/formulas/mathematics/college/uyfgbkuub0fblstlp13cr2z4jap9h2ped6.png)
So, E[y]=2×0.8=1.6
and Var[y]=2×0.56=1.12
Hence, E(Y) = 1.6 and Var(Y)=1.12