94.3k views
0 votes
Write a linear equation in

slope-intercept form that passes
through the points (-11,-5) and
(1,2).

User IMeMyself
by
8.7k points

1 Answer

3 votes


\bf (\stackrel{x_1}{-11}~,~\stackrel{y_1}{-5})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{2}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{2}-\stackrel{y1}{(-5)}}}{\underset{run} {\underset{x_2}{1}-\underset{x_1}{(-11)}}}\implies \cfrac{2+5}{1+11}\implies \cfrac{7}{12}


\bf \begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-5)}=\stackrel{m}{\cfrac{7}{12}}[x-\stackrel{x_1}{(-11)}]\implies y+5=\cfrac{7}{12}(x+11) \\\\\\ y+5=\cfrac{7}{12}x+\cfrac{77}{12}\implies y=\cfrac{7}{12}x+\cfrac{77}{12}-5\implies y = \cfrac{7}{12}x +\cfrac{17}{12}

User Guillochon
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories