Consider we need to find the first five terms of the given AP and the explicit formula.
Given:
when
![a_1=5](https://img.qammunity.org/2022/formulas/mathematics/high-school/p0gknsdgss2871rw190zm5p3avi6qim7f8.png)
To find:
First five terms of the given AP and the explicit formula.
Solution:
We have,
...(i)
, it means first term is 5.
Putting n=2 in (i), we get
![a_2=a_(2-1)-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/gn6yvizr40gkz9r4ytvsyw9iexhabonhhz.png)
![a_2=a_(1)-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/opuccfjut1ryenu3bh0rht5qt98w41ktx8.png)
![a_2=5-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/ee30674xx3fw7wum2lh28kc22md6cn0quu.png)
![a_2=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/pmm1wxjcvf38t2hr51lagpjmjrv0e8svz0.png)
Second term is 2. So, common difference is
![d=a_2-a_1](https://img.qammunity.org/2022/formulas/mathematics/high-school/9g1tqqg8tgdgnrowvygkv79nn9e88ajm5x.png)
![d=2-5](https://img.qammunity.org/2022/formulas/mathematics/high-school/vh2g5i35sg9t90oup5qix8q6l2c0fa8gj2.png)
![d=-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/miyrot2dzlv5xanido87ibqh42c6w4lo30.png)
First terms is 5 and common difference is -3. So, the first five terms of the AP are 5, 2, -1, -4, -7.
The explicit formula of an AP is
![a_n=a_1+(n-1)d](https://img.qammunity.org/2022/formulas/mathematics/high-school/jdlooxkpkmt6rkm8dkuaq7mb5satmo2ifz.png)
![a_n=5+(n-1)(-3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ne7s9yb6f9ba7wyn886tdwj5b23pp2ao91.png)
![a_n=5-3n+3](https://img.qammunity.org/2022/formulas/mathematics/high-school/82eir0yxs6idzm0dgo9g12sri97fsarpzl.png)
![a_n=8-3n](https://img.qammunity.org/2022/formulas/mathematics/high-school/do9ns88j1grwb5rz761esmk270yhxicgzy.png)
Therefore, the explicit formula of AP is
.