Answer: 0.4
Explanation:
We know that the standard deviation of the sampling distribution of mean is given by:-
![\sigma_x=(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/7mcgpoe42hhvdt6osylhuovp08pufmaqby.png)
Given : Standard deviation :
![\sigma= 2\text{ minutes}](https://img.qammunity.org/2020/formulas/mathematics/college/hf3q3t96thls1n7u5uav4mczj4lme7yj5e.png)
Sample size : n= 25
Then, the standard deviation of the sampling distribution of mean times will be :-
![\sigma_x=(2)/(√(25))\\\\\Rightarrow\ \sigma_x=(2)/(5)=0.4](https://img.qammunity.org/2020/formulas/mathematics/college/dtm2zbcocuqoz9zute4p87jvt2oc8la4f4.png)
Hence, the standard deviation of the sampling distribution of mean times=0.4