Answer:
![d=0.414* 10^(-4)\ m](https://img.qammunity.org/2020/formulas/engineering/college/33jeqjtcxbqlmmpoebice6arm0rii8hu5c.png)
Step-by-step explanation:
Given that
P = 4 KPa
Contact angle = 6°
Surface tension = 1 N/m
Lets assume that atmospheric pressure = 100 KPa
Lets take that density of water =
![1000\ kg/m^3](https://img.qammunity.org/2020/formulas/engineering/college/jsttuymp7gk9juq3loiwvdt1itwdc1xlwe.png)
So the capillarity rise h
![h=(\Delta P)/(\rho g)](https://img.qammunity.org/2020/formulas/engineering/college/t1bys4bzef69p4hv1t2fs6mis2aa2bdsym.png)
![h=(100* 1000-4* 1000)/(1000* 10)](https://img.qammunity.org/2020/formulas/engineering/college/acnd98edsx40cq845fqmbiasm5z14g1zvq.png)
h= 9.61 m
We know that for capillarity rise h
![h=(2\sigma cos\theta )/(r\rho g)](https://img.qammunity.org/2020/formulas/engineering/college/w4ri2kb7rbsy4rlpfzp0ska4bcjuobejva.png)
![r=(2\sigma cos\theta )/(h\rho g)](https://img.qammunity.org/2020/formulas/engineering/college/rt6vaif0r0go394drl2kv4l1ndfmbt9oxf.png)
![r=(2* 1 cos4^(\circ) )/(9.61* 1000* 10)](https://img.qammunity.org/2020/formulas/engineering/college/qetlz1mawibnigftwfl5espefr7dagt58o.png)
![r=0.207* 10^(-4)\ m](https://img.qammunity.org/2020/formulas/engineering/college/qa8p4lpq0cxjfqmzdgbkeamcpotgw74hir.png)
![d=0.414* 10^(-4)\ m](https://img.qammunity.org/2020/formulas/engineering/college/33jeqjtcxbqlmmpoebice6arm0rii8hu5c.png)