An implication
is true if either the premise
is false, or both the premise and conclusion
are both true, and false otherwise.
![\begin{array}cp&q&p\implies q&\\eg q&(p\implies q)\land\\eg q&\\eg p&(p\implies q)\land\\eg q\implies\\eg p\\T&T&T&&&&\\T&F&F&&&&\\F&T&T&&&&\\F&F&T&&&&\end{array}]()
Negation
is straightforward; if a statement is true, then its negation is false, and vice versa.
![\begin{array}cp&q&p\implies q&\\eg q&(p\implies q)\land\\eg q&\\eg p&(p\implies q)\land\\eg q\implies\\eg p\\T&T&T&F&&F\\T&F&F&T&&F\\F&T&T&F&&T\\F&F&T&T&&T\end{array}]()
A conjunction
is true if both premises are true, and false otherwise.
![\begin{array}cp&q&p\implies q&\\eg q&(p\implies q)\land\\eg q&\\eg p&(p\implies q)\land\\eg q\implies\\eg p\\T&T&T&F&F&F\\T&F&F&T&F&F\\F&T&T&F&F&T\\F&F&T&T&T&T\end{array}]()
Finally, by the rules of implication, we can fill the last column:
![\begin{array}cp&q&p\implies q&\\eg q&(p\implies q)\land\\eg q&\\eg p&(p\implies q)\land\\eg q\implies\\eg p\\T&T&T&F&F&F&T\\T&F&F&T&F&F&T\\F&T&T&F&F&T&T\\F&F&T&T&T&T&T\end{array}]()