42.5k views
4 votes
Help is appreciated! Thanks!

I really need these answers explained!!

1) Simplify
-4i√-48

2) Multiply. Give your answer in radical form. (-5-5i)(3-6i)

3) Multiply. Give your answer in radical form. √3√5√17

4) Multiply. Give your answer in radical form. √3(√24+√30)

User Guilty
by
9.0k points

2 Answers

6 votes

Answer:

4)
6√(2) + 3√(10)

3)
√(255)

2)
15i - 45

1)
16√(3)

Explanation:

4)
√(3)[√(24) + √(30)] = √(72) + √(90) = √([2][36]) + √([10][9]) = 6√(2) + 3√(10)

3)
√(255) = [√(3)][√(5)][√(17)]

2)
[-5 - 5i][3 - 6i] = -15 + 15i + 30{i}^(2) = -15 + 15i - 30 = 15i - 45

1)
-4i√(-48) = -4i√([3][16][i]) = -4i[4i]√(3) = -16{i}^(2) √(3) = 16√(3)

Extended Information on the Complex Number System


√(-1) = i


-1 = {i}^(2)


-i = {i}^(3)


1 = {i}^(4)

I am joyous to assist you anytime.

User Carles Company
by
8.2k points
3 votes

Answer:

  1. 16√3
  2. -45+15i
  3. √255
  4. 6√2 +3√10

Explanation:

1)


-4i√(-48)=-4i√((-1)(4^2)(3))=(-4i)(4i)√(3)=16√(3)

__

2)


(-5-5i)(3-6i)=-5(3-6i)-5i(3-6i)=-15+30i-15i+30i^2=-15-30+15i\\\\=-45+15i

__

3)


√(3)√(5)√(17)=√(3\cdot 5\cdot 17)=√(255)

__

4)


√(3)(√(24)+√(30))=√(3\cdot 24)+√(3\cdot 30)=√(6^2\cdot 2)+√(3^2\cdot 10)\\\\=6√(2)+3√(10)

_____

The applicable identities are ...


√(a^2b)=a√(b)\\\\i^2=-1

User Dilmah
by
8.0k points