137k views
2 votes
Can someone pls do 25 and 26 with working

Can someone pls do 25 and 26 with working-example-1

1 Answer

4 votes

25.

Show


(\tan x + \sin x)/(\tan x - \sin x) = (\sec x + 1)/(\sec x - 1)


(\tan x + \sin x)/(\tan x - \sin x)


= ((\sin x)/(\cos x) + \sin x)/((\sin x)/(\cos x) - \sin x)


= (\sin x ( (1)/(\cos x) + 1))/(\sin x( ( 1)/(\cos x) - 1))


= (\sec x + 1)/(\sec x - 1) \quad\checkmark

26.

Show


(\cot \theta + \csc \theta - 1)/(\cot \theta - \csc \theta +1) = (1+\cos \theta)/(\sin \theta)

That's the cotangent half angle formula on the right, so I guess on the left too.

I fooled around with this one for a while before I took the hint which was to let
\theta=2x.


(\cot 2x + \csc 2x - 1)/(\cot 2x- \csc 2x +1)


=( (\cos 2x / \sin 2x) + (1/\sin 2x ) - 1)/(\cos 2x/\sin 2x - 1/\sin 2x + 1)


=(\cos 2x + 1 - \sin 2x)/(\cos2x - 1 + \sin 2x)


=(2\cos^2 x - 1 + 1 -2 \cos x \sin x )/(1 - 2\sin^2x-1 + 2\sin x \cos x)


=(2 \cos^2 x -2 \cos x \sin x )/(-2\sin^2x+2 \sin x \cos x)


=(2\cos x)/(2 \sin x) \cdot (\cos x- \sin x)/(-\sin x +\cos x)


=(2\cos x)/(2\sin x)


=(2\cos^2 x)/(2\sin x\cos x)


=(1 + 2\cos^2 x - 1)/(2\sin x\cos x)


= (1 + \cos 2x)/(\sin 2x)


=(1+\cos \theta)/(\sin \theta) \quad\checkmark

------

For another answer, let's use the hint on this one, which was to write


1=\csc^2 \theta - \cot^2 \theta

That's a good hint; first let's verify if it's true.


\sin^2 \theta + \cos^2 \theta = 1


\sin^2 \theta = 1 - \cos^2 \theta


1 = (1)/(\sin ^2 \theta) - (\cos ^2 \theta)/(\sin ^2 \theta)


1 = \csc^2 \theta - \cot^2 \theta \quad\checkmark

Now,


(\cot \theta + \csc \theta - 1)/(\cot \theta - \csc \theta +1)


= (\cot \theta + \csc \theta - (\csc^2 \theta - \cot^2 \theta))/(\cot \theta - \csc \theta +1)


= (\cot \theta + \csc \theta +(\cot^2 \theta - \csc^2 \theta))/(\cot \theta - \csc \theta +1)


= (\cot \theta + \csc \theta +(\cot \theta - \csc \theta)(\cot \theta + \csc \theta))/(\cot \theta - \csc \theta +1)


= ((\cot \theta + \csc \theta)(1+ \cot \theta - \csc \theta))/(\cot \theta - \csc \theta +1)


=\cot \theta + \csc \theta


=( \cos \theta)/(\sin \theta)+ (1)/(\sin \theta)


=(1+ \cos \theta)/(\sin \theta) \quad\checkmark

User Xunzhang
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories