The rocket should be fired for 129600 seconds.
Why?
We can calculate for how long should the rocket be fired by using the following equation:
![Force=mass*aacceleration=mass*(v-v_(o))/(time) \\\\time=(mass*(v-v_(o)))/(Force)](https://img.qammunity.org/2020/formulas/physics/middle-school/zd79v0cxi6l0xmhrgiw2xopcl8u2gls98n.png)
From the statement we know:
- Initial speed equal to zero.
- Force equal to 272N.
- Final speed (for the moment) equal to 62 m/s.
- Mass equal to 72000 Kg.
So, substituting and calculating, we have:
![time=(mass*(v-v_(o)))/(Force)](https://img.qammunity.org/2020/formulas/physics/middle-school/ryho0uleiy7i6dgfem6917vr1evoesc1qj.png)
![time=(mass*(v-v_(o)))/(Force)\\\\time=(72000*(63(m)/(s) -0))/(35(Kg.m)/(s^(2)))=129600s](https://img.qammunity.org/2020/formulas/physics/middle-school/nvjedz2rkcd45bse3mucqb4zlqmeepbnwv.png)
Hence, we have:
Variables: Time
Equations:
![Force=mass*aacceleration=mass*(v-v_(o))/(time) \\\\time=(mass*(v-v_(o)))/(Force)](https://img.qammunity.org/2020/formulas/physics/middle-school/zd79v0cxi6l0xmhrgiw2xopcl8u2gls98n.png)
Answers: The rocket should be fired for 129600 seconds.
Have a nice day!