Answer:
84 cubes
Explanation:
Given,
The dimension of the rectangular prism are,
![1(1)/(3)\text{ ft }* 1\text{ ft }* 2(1)/(3)\text{ ft }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h8ek56cnf7kqgvc5jbnw66bxd6cff2h6tn.png)
Hence, the volume of the prism,
![V=1(1)/(3)* 1* 2(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ayfvfz1biy0cairpq8ng5wcofbqrpdhtyh.png)
![=(4)/(3)* (7)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dkqlpyz2j82k3udgaeebyk9smnkvpdf2co.png)
![=(28)/(9)\text{ cube ft}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i3pe8mbz9mwgcu2gi2fxgkizexopqog8lz.png)
Now, the volume of a cube = sideĀ³,
If side =
ft,
Then the volume of each cube,
![V'=((1)/(3))^3=(1)/(27)\text{ cube ft}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ozlkkyw4ksjf9aq7e2tbxqi9j483vva129.png)
Hence, the number of cubes that can be packet in the prism
![=(V)/(V')](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6jbtrihhuvcz6o4bzzsyk43pkzmcfkgwer.png)
![=(28/9)/(1/27)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mwn75ofj9bkz54pgxqq2fzmftel0utevgf.png)
![=(27* 28)/(9)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rqdarg3mdlsae5591bnqz171oydhchv3bj.png)
![=3* 28](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ye69n3g8rgnd93bxos1sy41snzq02whph8.png)
![=84](https://img.qammunity.org/2020/formulas/mathematics/college/g73fg9ykckiv3l5tdjay7gscva6lap3yk3.png)