223k views
2 votes
Find the limit, if it exists. (If an answer does not exist, enter DNE.)

lim x->0.1^- 10x-1/|10x^3-x^2|

1 Answer

3 votes

let's change some the 0.1 to say 1/10, just the fraction version of it.


\bf \lim\limits_{x\to \left( (1)/(10) \right)^-}~\cfrac{10x-1}\implies \lim\limits_{x\to \left( (1)/(10) \right)^-}~\cfrac{10(-x)-1}{10(-x)^3-(-x)^2}


\bf \cfrac{-10x-1}{-10x^3-x^2}\implies \cfrac{-10\left( (1)/(10) \right)-1}{-10\left( (1)/(10) \right)^3-\left( (1)/(10) \right)^2}\implies \cfrac{-1-1}{-(1)/(100)-(1)/(100)}\implies \cfrac{-2}{(-2)/(100)} \\\\\\ \cfrac{~~\begin{matrix} -2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{1}\cdot \cfrac{100}{~~\begin{matrix} -2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies 100

when checking an absolute value expression, we do the one-sided limits, since an absolute value expression is in effect a piecewise function with ± versions, so for the limit from the left we check the negative version.

User Sundara Prabu
by
7.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.