14.1k views
4 votes
The pressure in an automobile tire depends on the temperature of the air in the tire. When the air temperature is 25°C, the pressure gage reads 210 kPa. If the volume of the tire is 0.025 m3, determine the pressure rise in the tire when the air temperature in the tire rises to 44°C. Also, determine the amount of air that must be bled off to restore pressure to its original value at this temperature. Assume the atmospheric pressure to be 100 kPa.

User Sammiepls
by
5.2k points

1 Answer

5 votes

Answer:

ΔP=19.76 KPa


\Delta m=10^(-3)\ gm

Step-by-step explanation:

Given that


T_1= 25C,  P_1= 210 \KPa \gauge

atmospheric pressure = 100 kPa.

So absolute pressure = Atmospheric pressure + gauge pressure


P_1=210+100\ KPa (absolute)


P_1=310\ KPa (absolute)

Here volume of air is constant .We know that for constant volume pressure


(P_1)/(T_1)=(P_2)/(T_2)

here


T_2= 44C


T_1=273+25=298K


T_2=273+44=317K


(P_1)/(T_1)=(P_2)/(T_2)


(310)/(298)=(P_2)/(317)


P_2=329.76\ KPa (absolute)

So rise in pressure


\Delta P=P_1-P_2

ΔP=329.76-310 KPa

ΔP=19.76 KPa


m_1=(P_1V)/(RT_1)


m_1=(310* 0.025)/(0.287* 298)


m_1=0.090615\ kg


m_2=(P_2V)/(RT_2)


m_2=(329.76* 0.025)/(0.287* 317)


m_2=0.090614\ kg

Δm=0.090615 - 0.090614 kg


\Delta m=10^(-3)\ gm

User Ed Heal
by
5.7k points