423,603 views
1 vote
1 vote
Find the next two terms 1,5,17,53,161

User Oren
by
2.9k points

1 Answer

19 votes
19 votes

Let
a_n denote the
n-th term in the sequence. By checking the forward differences, we observe


a_2 - a_1 = 5 - 1 = 4 = 4\cdot3^0


a_3 - a_2 = 17 - 5 = 12 = 4\cdot3^1


a_4 - a_3 = 53 - 17 = 36 = 4\cdot3^2


a_5 - a_4 = 161 - 53 = 108 = 4\cdot3^3

The pattern is


\begin{cases} a_1 = 1 \\ a_n = a_(n-1) + 4\cdot3^(n-2) & \text{for } n\ge1 \end{cases}

So we find


a_6 = a_5 + 4\cdot3^(6-2) = 161 + 4\cdot3^4 = \boxed{485}


a_7 = a_6 + 4\cdot3^(7-2) = 485 + 4\cdot3^5 = \boxed{1457}

We also could have solved for
a_n first. By substitution,


a_(n-1) = a_(n-2) + 4\cdot3^(n-3) \\\\ ~~~~ \implies a_n = a_(n-2) + 4 \left(3^(n-2) + 3^(n-3)\right)


a_(n-2) = a_(n-3) + 4\cdot3^(n-4) \\\\ ~~~~ \implies a_n = a_(n-3) + 4 \left(3^(n-2) + 3^(n-3) + 3^(n-4)\right)


a_(n-3) = a_(n-4) + 4\cdot3^(n-5) \\\\ ~~~~ \implies a_n = a_(n-4) + 4 \left(3^(n-2) + 3^(n-3) + 3^(n-4) + 3^(n-5)\right)

and so on. After so many iterations of this, we see the pattern


a_n = a_(n-k) + 4 \displaystyle \sum_(\ell=1)^k 3^(n-2-(\ell-1)) = a_(n-k) + 4 \cdot 3^(n-1) \sum_(\ell=1)^k \frac1{3^\ell}

so that for
k=n-1, we get


\displaystyle a_n = a_1 + 4 \cdot 3^(n-1) \sum_(\ell=1)^(n-1) \frac1{3^\ell}

Let
S_(n-1) be the remaining sum. We have


S_(n-1) = \frac13 + \frac1{3^2} + \frac1{3^3} + \cdots + \frac1{3^(n-1)}


\frac13 S_(n-1) = \frac1{3^2} + \frac1{3^3} + \frac1{3^4} + \cdots + \frac1{3^n}


\implies \frac23 S_(n-1) = \frac13 - \frac1{3^n}


\implies S_(n-1) = \frac12 \left(1 - \frac1{3^(n-1)}\right)

and so


\displaystyle a_n = 1 + 4 \cdot 3^(n-1) \cdot \frac12 \left(1 - \frac1{3^(n-1)}\right) \\\\ a_n = 2\cdot3^(n-1) - 1

Then


a_6 = 2\cdot3^(6-1)-1 = 485


a_7 = 2\cdot3^(7-1)-1 = 1457

User Berek Bryan
by
3.2k points