Answer:
Step-by-step explanation:
To check whether the given functions are bijections or not.
![a) f(x) = -3x+4\\](https://img.qammunity.org/2020/formulas/computers-and-technology/college/dd1ntx0s0zyft3egib59klnmjavwfn6jem.png)
For x1 and x2 if
![f(x1)=f(x2)\\-3x1+4 =-3x2+4\\x1=x2](https://img.qammunity.org/2020/formulas/computers-and-technology/college/mpquyww398ctn122f9qyz87k97onnktngp.png)
Hence one to one
For any given f(x) we have
hence co domain = range. Thus onto
Hence bijection.
b)
![f(x) = -3x^2+7](https://img.qammunity.org/2020/formulas/computers-and-technology/college/zy6qd7m5n31qdr4mot0gr9utrfuony94yo.png)
Let x =a and x=-a
We get
for all a
Hence f is not one to one
Not bijective.